CH4 dissociation on Ni(111): a quantum dynamics study of lattice thermal motion.

نویسندگان

  • Xiangjian Shen
  • Zhaojun Zhang
  • Dong H Zhang
چکیده

Lattice thermal motion is of great importance because it has a significant effect on molecule activation on metal surfaces. Here, we present an in-depth quantum dynamics study of lattice thermal motion for methane dissociation on some static distorted Ni(111) surfaces based on an accurate, fourteen-dimensional potential energy surface fitted to ∼10(5)ab initio energy points. Our study reproduces the tendency that the sticking probability of ground state methane increases (decreases) as the lattice atom moves upward (downward), and thus represents the first validation of the applicability of the energy-shifting scheme to polyatomic molecular gas-surface reactions. Furthermore, we improve on the linear model proposed by Jackson's group and introduce a new model that is applicable to a broad range of surface temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum-state-resolved reactivity of overtone excited CH4 on Ni(111): Comparing experiment and theory.

Quantum state resolved reactivity measurements probe the role of vibrational symmetry on the vibrational activation of the dissociative chemisorption of CH4 on Ni(111). IR-IR double resonance excitation in a molecular beam was used to prepare CH4 in three different vibrational symmetry components, A1, E, and F2, of the 2ν3 antisymmetric stretch overtone vibration as well as in the ν1+ν3 symmetr...

متن کامل

Surface diffusion: the low activation energy path for nanotube growth.

We present the temperature dependence of the growth rate of carbon nanofibers by plasma-enhanced chemical vapor deposition with Ni, Co, and Fe catalysts. We extrapolate a common low activation energy of 0.23-0.4 eV, much lower than for thermal deposition. The carbon diffusion on the catalyst surface and the stability of the precursor molecules, C2H2 or CH4, are investigated by ab initio plane w...

متن کامل

Assessing a microcanonical theory of gas-surface reactivity: Applicability to thermal equilibrium, nonequilibrium, and eigenstate-resolved dissociation of methane on Ni„100..

A simple, three-parameter microcanonical theory of gas-surface reactivity is shown to predict experimental dissociative sticking probabilities for methane dissociative chemisorption on the Ni~100! surface over roughly ten orders of magnitude variation in both pressure and sticking—even at quantum state resolved levels of detail. Facile energy randomization within the transiently formed gas-surf...

متن کامل

Quantum state resolved molecular beam reflectivity measurements: CH4 dissociation on Pt(111).

The King and Wells molecular beam reflectivity method has been used for a quantum state resolved study of the dissociative chemisorption of CH4 on Pt(111) at several surface temperatures. Initial sticking coefficients S0 were measured for incident CH4 prepared both with a single quantum of ν3 antisymmetric stretch vibration by infrared laser pumping and without laser excitation. Vibrational exc...

متن کامل

Quantum state-resolved CH4 dissociation on Pt(111): coverage dependent barrier heights from experiment and density functional theory.

The dissociative chemisorption of CH4 on Pt(111) was studied using quantum state-resolved methods at a surface temperature (T(s)) of 150 K where the nascent reaction products CH3(ads) and H(ads) are stable and accumulate on the surface. Most previous experimental studies of methane chemisorption on transition metal surfaces report only the initial sticking coefficients S0 on a clean surface. Re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 38  شماره 

صفحات  -

تاریخ انتشار 2015